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Strategic Roadmap for Integrating AI and Digital Twin 
Technologies in Global Manufacturing by 2040 

Abstract 
In this paper, we present a strategic roadmap for the integration of artificial intelligence (AI) and digital twin 

technologies within global manufacturing by the year 2040. We explore the transformative potential of these technologies 
and highlight how they are redefining production design, operational efficiency, and strategic foresight. Digital twins, which 
serve as virtual replicas of physical systems, are identified as pivotal in enhancing system performance, predicting 
maintenance needs, and optimizing real-time production processes. We emphasize the critical role of integrating advanced 
AI and machine learning (ML) techniques within digital twins to achieve these objectives. Our key research questions 
address the development of AI models for real-time data processing, the optimization of machine learning techniques for 
predictive accuracy, and the management of uncertainty within digital twin systems. We also discuss the importance of model 
predictive control (MPC) for real-time operational optimization and the utilization of foundational models for scalability 
and generalization across diverse manufacturing scenarios. 

Furthermore, we outline the essential characteristics of a 2040 industry leader in manufacturing, emphasizing the 
integration of cutting-edge technologies, sustainability practices, and adaptive, data-driven decision-making processes. We 
identify significant challenges in integrating digital twins with AI and ML, such as handling complex data streams, 
improving predictive precision, and ensuring dynamic calibration. Our proposed strategic solutions include the development 
of efficient machine learning models, implementation of edge computing, and advanced uncertainty quantification methods. 
We provide a detailed implementation roadmap that spans foundational development, system integration and testing, to 
global rollout and continuous improvement. By following this roadmap, manufacturing enterprises can harness the full 
potential of digital twins, achieving higher efficiencies, reduced operational risks, and enhanced adaptability in a rapidly 
evolving technological landscape. 

1. Introduction
As we approach the year 2040, the global design and manufacturing sectors are on the brink of a major transformation,

propelled by rapid advancements in artificial intelligence (AI), machine learning (ML), and digital twin technologies [1].
These technologies are not only reshaping existing industrial landscapes but also redefining the boundaries of production
design, operational efficiency, and strategic foresight, particularly for enterprises specializing in AI-driven digital twin
solutions. In this context of rapid technological evolution, maintaining a competitive edge is not merely advantageous but
essential for survival and industry leadership. A Digital Twin, as defined, is an integrated multiphysics, multiscale,
probabilistic simulation of an as-built vehicle or system that utilizes the best available physical models, sensor updates, fleet
history, etc., to mirror the life of its corresponding twin [2]. This comprehensive digital representation enables industries  to
enhance system performance, predict maintenance needs, and optimize production processes in real-time, transforming how
industries operate and innovate [3].

Figure 1 illustrates a digital twin framework, showcasing the interaction between physical and digital systems. The
physical side includes manufacturing elements like sensors and actuators, which feed data into the digital side where it is
stored and analyzed. Key digital components include model-based process control, artificial intelligence, and physics-based
simulations, supported by comprehensive dashboards for real-time decision-making and monitoring. This integration
enhances operational efficiency by mirroring physical processes in a digital environment.

The application of AI and ML in manufacturing processes is revolutionizing traditional methods, facilitating the
transition to more agile and adaptable manufacturing systems. For instance, AI algorithms optimize production lines in real-
time, predicting and mitigating potential disruptions before they occur [4]. Furthermore, the integration of ML techniques
with robotics has led to the development of autonomous robots that can perform complex assembly tasks with precision and
flexibility [5]. Digital twin technology complements these innovations by creating virtual replicas of physical systems,
allowing manufacturers to test and modify processes in a simulated environment before actual implementation [6]. This
integration significantly enhances operational efficiency and reduces time to market, providing a robust framework for
continuous improvement and innovation. Additionally, a digital twin framework for real-time model predictive control of
process parameters aims to optimize performance and material properties by integrating real-time monitoring with machine
learning models [7].

G2
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Figure 1. In this figure, we outline a digital twin framework, showcasing the interac:on between physical manufacturing elements and digital systems, enhancing 
opera:onal efficiency through real-:me data analysis and decision-making. 

In this paper we work on how to use advanced technologies, specifically AI, ML, and digital twins, for transforming the 
manufacturing sector. From this context, several cri@cal research ques@ons emerge that aim to address iden@fied gaps and 
further the development of digital twin capabili@es. These ques@ons are founda@onal to understanding how digital twins 
can be op@mized and effec@vely implemented in modern manufacturing processes: 

A. How can AI models be developed to process and react to real-6me data from various sources within digital twin 
frameworks? [8] 

B. How can advanced machine learning techniques be op6mized within digital twins to enhance predic6ve accuracy and 
control manufacturing processes? [9] 

C. How can founda6onal models be adapted and op6mized within digital twin frameworks to enhance scalability and 
generaliza6on across different manufacturing scenarios? [10] 

D. How can a networked system of digital twins be orchestrated to collaborate effec6vely, sharing insights and op6mizing 
processes across mul6ple manufacturing sites? [11] 

E. How can uncertainty in predic6ve modeling be quan6fied and managed within digital twin systems to ensure reliable 
manufacturing outcomes? [12] 

F. What are the ways of integra6ng real-6me model predic6ve control with digital twins to op6mize manufacturing 
performance and material proper6es? 

This research ques@on delves into the specific impacts of applying real-@me model predic@ve control within digital 
twins, looking at how this integra@on can op@mize opera@onal parameters and improve material proper@es in 
manufacturing, thereby reducing @me to market and enhancing product quality [13]. The details of the research ques@ons 
with their explana@on is given in sec@on I of Appendix.  

Each of these ques@ons aims to push the boundaries of current manufacturing technologies and provide a roadmap 
for significant innova@ons within the manufacturing industry. By addressing these ques@ons, researchers and prac@@oners 
can help ensure that digital twins serve as a cornerstone of strategic foresight and opera@onal efficiency in the 
manufacturing sector moving toward 2040. These iden@fied research gaps form the cornerstone of our inves@ga@on, 
aiming to advance the scien@fic and technological founda@ons necessary for the next-genera@on digital twin capabili@es 
in the manufacturing sector. 
 

2. Characteristics of a 2040 Industry Leader in Manufacturing 
  Success in the high-tech manufacturing industry of 2040 will hinge on several key characteris@cs that companies need 
to cul@vate to stay compe@@ve and set industry standards in a rapidly evolving technological landscape. The integra@on of 
advanced technologies such as AI, ML, digital twins, and IoT is essen@al, enabling real-@me monitoring, predic@ve 
maintenance, and process op@miza@on that enhance efficiency and reduce down@me. Sustainability and circular economy 
prac@ces will be crucial, involving the use of renewable energy sources, maximizing material efficiency, and implemen@ng 
recycling and reusing strategies to minimize environmental impact. The ability to provide customized and personalized 
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products efficiently at scale will serve as a key differen@ator, u@lizing flexible manufacturing systems and advanced 
fabrica@on technologies like 3D prin@ng to rapidly adapt to consumer preferences. Seamless supply chain integra@on will 
be cri@cal, with advanced predic@ve analy@cs and digital twins op@mizing supply chains to an@cipate and mi@gate 
disrup@ons. 

Furthermore, balancing global operational excellence with local responsiveness will be necessary, designing 
systems that leverage global economies of scale while being responsive to local market needs and regulatory requirements. 
Empowering the workforce through technology to focus on complex problem-solving and innovation tasks will be vital, 
requiring continuous training and development programs to keep skills updated. Proactive risk management will involve 
sophisticated strategies to identify and swiftly respond to potential risks, with digital twins simulating various risk scenarios 
to aid in effective mitigation strategies. Finally, data-driven decision making will become a standard practice, collecting and 
analyzing vast amounts of data to enhance product quality, optimize operations, and drive innovation. Addressing the 
challenges of integrating these technologies, such as managing complex data streams and ensuring security, will be essential 
for realizing their full potential in manufacturing, ultimately ensuring that digital twins effectively mirror physical processes 
and contribute to robust decision-making and risk management. More information is added in the appendix.  
 

3. Challenges for Optimal Integration of Digital Twins with AI and ML for Manufacturing 
  Digital twins, serving as complex virtual models that mirror physical manufacturing processes and products, act as a 
crucial interface between real-world opera@ons and digital simula@on, significantly enhancing manufacturing outcomes 
through improved data analysis and predic@ve capabili@es. Key challenges in integra@ng digital twins with AI and ML include 
handling complex data streams generated from IoT sensors, machine logs, and environmental inputs, which necessitate 
scalable data architectures for real-@me processing and analysis. Enhancing predic@ve precision is crucial, employing AI 
and ML algorithms to analyze historical and real-@me produc@on data to predict failures, schedule maintenance, and 
op@mize produc@on lines. Digital twins must dynamically adjust opera@onal parameters in real-@me based on feedback 
from the produc@on floor and AI insights, requiring adap@ve algorithms for con@nuous learning and updates. Uncertainty 
quan@fica@on is essen@al, u@lizing advanced sta@s@cal models to integrate uncertain@es into predic@ons and ensure 
decision-making reliability under variable condi@ons. Integra@on across diverse systems such as MES, ERP, and SCM is 
necessary, involving robust APIs and middleware that handle diverse data formats and ensure synchroniza@on across 
pla]orms. As manufacturing opera@ons expand, digital twins must scale and adapt, leveraging AI components with cloud 
and edge compu@ng solu@ons to distribute processing loads and maintain responsiveness. Addressing security and privacy 
concerns is also cri@cal, as the integra@on of AI introduces significant risks, par@cularly when data is processed across 
decentralized networks, requiring strong encryp@on and secure data management prac@ces to protect sensi@ve 
manufacturing data. Addressing these challenges allows digital twins to substan@ally improve manufacturing opera@ons, 
enhancing efficiency, product quality, and opera@onal agility. 
 

4. Strategic Solutions for Digital Twins Frameworks with AI and ML in Manufacturing for 2040 
To thrive in the competitive and technologically advanced manufacturing landscape of 2040, enterprises need to employ 

advanced strategic solutions to enhance the integration of digital twins with artificial intelligence (AI) and machine learning 
(ML). These solutions focus on improving the predictive systems and reliability of digital twin technologies to optimize 
manufacturing processes and ensure robust system performance. Below are comprehensive strategies organized into key 
initiatives without sub-points, ensuring clarity and focus on actionable plans: 

i. Improving Digital Twins with fast and efficient machine learning models for manufacturing state tracking and 
prediction:  

Improving predictive systems through AI involves developing custom AI models specifically tailored for digital 
twin applications to enhance predictive accuracy concerning system failures, maintenance needs, and process optimization. 
These models are crucial as they leverage both historical and real-time operational data to forecast potential disruptions, 
thereby enabling preemptive adjustments that can prevent costly downtimes and prolong equipment lifespan. By integrating 
advanced machine learning algorithms, such as recurrent neural networks (RNNs) Long Short-Term Memory (LSTM) 
networks, and transformers which are particularly effective for time-series data, digital twins can continuously learn and 
adapt to new patterns, improving their predictive accuracy over time [14] [15]. 
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The importance of employing fast surrogate models in this context cannot be overstated. Surrogate models, such as 
Gaussian processes or simplified neural networks, are used to approximate the behavior of complex systems quickly and 
with reduced computational costs [16]. These models are essential for scenarios where real-time decision-making is critical, 
as they allow for rapid predictions that can be crucial for operational management and immediate response strategies. 
Furthermore, regular model updates are necessary to maintain the accuracy and relevance of the predictive models. 
Techniques like online learning, where the model is continuously updated as new data comes in, and transfer learning, which 
adapts pre-trained models to new but related tasks, are vital for keeping the digital twin models effective as the operational 
environment evolves [17]. 

 

 

 
Figure 2. In this figure, we see a visual representa:on of various data structures categorized by their complexity, ranging from sparse data to image data. Sparse 
data examples include network diagrams and mul:-dimensional scaEer plots, demonstra:ng minimalis:c yet significant informa:on points. Sequen:al data is 
depicted with :me series graphs and flow diagrams, emphasizing data that progresses over :me. Graph (field) data illustrates interconnected nodes and complex 
network rela:onships, suited for represen:ng structured rela:onships and interac:ons. Lastly, image data showcases dense pixel arrays, ideal for visual content 
analysis. This diagram highlights the diversity in data types and their respec:ve complexi:es, used for different computa:onal and analy:cal purposes. 

In Figure 2. we list down the machine learning models which can be used in digital twins according to the data 
structure of the information flowing[18]. Incorporating these elements into digital twin systems transforms them into 
dynamic tools capable of supporting complex decision-making processes. By utilizing predictive models that are constantly 
updated and adapted, manufacturing operations can achieve higher efficiencies, minimize risk, and respond more adeptly to 
unforeseen changes. This approach not only enhances the operational capabilities of digital twins but also ensures that they 
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Research Question A. How can AI models be developed to process and react to real-time data from 
various sources within digital twin frameworks? 
Hypothesis. We create fast surrogate models which are able to make accurate enough predictions with 
lower computation cost. 

Research Question B. How can advanced machine learning techniques be optimized within digital 
twins to enhance predictive accuracy and control manufacturing processes? 
Hypothesis. Implementing a combination of deep learning for anomaly detection and reinforcement 
learning for adaptive process control within digital twins will significantly enhance predictive accuracy 
and optimize real-time manufacturing process adjustments, leading to improved operational efficiency 
and reduced system failures. 
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remain a valuable asset in the increasingly automated and data-driven landscape of modern manufacturing. In the next sub-
section, we investigate the capabilities of these machine learning algorithms to serve as foundational models for digital twin 
framework.  
 

ii. Foundational model for digital twin framework for Manufacturing: 
The integration of foundational models into digital twin technology represents a transformative advance in enhancing 

the capabilities of digital twins in manufacturing. Foundational models, which are large, pre-trained models on vast datasets, 
provide a robust base that can be fine-tuned for specific tasks without the need for extensive training from scratch. This 
approach is particularly beneficial for digital twins, as it allows them to leverage complex machine learning algorithms that 
can predict, simulate, and optimize manufacturing processes with greater accuracy and efficiency. By utilizing foundational 
models, digital twins can quickly adapt to new manufacturing conditions or requirements, significantly reducing the time 
and resources typically required for model training. This rapid adaptability is crucial for industries facing fast-paced market 
changes and technological advancements, ensuring that digital twins remain relevant and effective in real-time decision-
making and process optimization. In Figure 3. we demonstrate the flow of pre-training and finetuning foundation models 
for different manufacturing processes.  

  

 

 
 

Figure 3. In this figure we illustrate the training and applica:on process of a founda:onal model tailored for manufacturing. It begins with tensor random 
ini:aliza:on, advancing through stages where the model is trained from scratch to recognize and process various geometrical shapes. The model is further 
adapted to new geometries, materials, and specific machinery, showing its versa:lity and capability for task-specific fine-tuning. The lower part of the diagram 
highlights the incorpora:on of a nonlocal aEen:on operator, which enhances the model's ability to focus on significant features within the data, ul:mately 
improving accuracy and efficacy in real-world manufacturing applica:ons. 

In terms of specific algorithms, Transformer-based models, Neural Operators and Variational Autoencoders (VAEs) are 
examples of foundational models that have shown promise in digital twin applications [10]. Transformers, renowned for 
their effectiveness in handling sequential data, are ideal for modeling time-dependent processes in manufacturing settings, 
offering good capabilities in understanding and predicting patterns over time [19]. VAEs, on the other hand, are useful for 
generating high-quality simulations. They can model the distribution of complex data, enabling digital twins to generate 
accurate and diverse scenarios for testing and optimization purposes [20]. These algorithms help foundational models to 
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Research Question C. How can foundational models be adapted and optimized within digital twin 
frameworks to enhance scalability and generalization across different manufacturing scenarios? 
Hypothesis. Adapting and fine-tuning large, pre-trained foundational models within digital twin 
frameworks will significantly enhance scalability and generalization capabilities across diverse 
manufacturing scenarios, leading to more robust and efficient production systems adaptable to various 
operational demands. 
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effectively support the dynamic and multifaceted demands of digital twin technologies, enhancing their precision and utility 
in industrial applications. 

In the next section, we discuss the importance of machine learning algorithms to be useful for creating adaptive and 
efficient control systems within digital twin frameworks for manufacturing. These algorithms are essential for the real-time 
interpretation and processing of vast data streams generated from manufacturing operations. By harnessing the power of 
advanced machine learning, digital twins can dynamically adjust to changes in the manufacturing environment, optimizing 
processes and improving decision-making accuracy. This seamless integration of machine learning with digital twins forms 
the backbone of a more intelligent manufacturing ecosystem, bridging the gap between predictive analytics and operational 
execution. Such capabilities are further enhanced by the implementation of edge computing, which brings processing power 
closer to the data source, thereby reducing latency and enabling more immediate and effective responses to operational 
demands. This strategic fusion of machine learning and edge computing ensures that digital twins are not only reactive but 
also proactive in maintaining high production standards and efficiency. 
 

iii. Implementation of Edge Computing:  
The implementation of edge computing in digital twin systems is a important strategy for enhancing manufacturing 

operations [21]. By deploying edge computing solutions, data can be processed directly at manufacturing sites, which 
significantly reduces the latency typically associated with sending data to centralized cloud servers. This proximity in data 
processing not only minimizes latency but also maximizes the responsiveness of digital twin systems, enabling them to 
handle real-time data processing and facilitate immediate decision-making. This capability is crucial for maintaining 
continuous and efficient production lines, where even minor delays can lead to significant disruptions and losses. Edge 
computing allows for a more robust and responsive digital infrastructure, capable of supporting high-frequency decision-
making processes that are essential in modern manufacturing environments. 

 

 

 
Figure 4. In the figure, we see a distributed edge computing architecture featuring three edge devices, each integrated with sensors and a fine-tuned model, 
communicating bidirectionally with a cloud server that hosts a foundational model. This setup facilitates real-time data processing and synchronization, leveraging 
local computation at the edge for efficiency while centralizing model management for robustness in the manufacturing digital twins. 

In the context of edge computing, specific algorithms are optimized for such environments to ensure efficient data 
processing and decision-making at the edge of the network. For instance, Lightweight Machine Learning (LightML) 
algorithms and Stream Processing frameworks are particularly suitable for edge computing scenarios [22]. LightML 
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Research Question D. How can a networked system of digital twins be orchestrated to collaborate 
effectively, sharing insights and optimizing processes across multiple manufacturing sites? 
Hypothesis. By implementing a centralized management system with advanced synchronization and 
data-sharing protocols, a networked system of digital twins can be orchestrated to effectively collaborate, 
sharing insights and optimizing processes across multiple manufacturing sites, resulting in enhanced 
overall efficiency and reduced operational redundancy. 
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algorithms are designed to require fewer computational resources, making them ideal for the limited processing power 
available at edge devices. Similarly, Stream Processing frameworks like Apache Kafka and Apache Flink are designed to 
handle real-time data streams efficiently, processing incoming data on-the-fly without the need for batch processing [23]. 
These technologies are integral to implementing edge computing in digital twin systems, enhancing their ability to provide 
timely insights and enabling automated responses directly from the manufacturing site, thereby optimizing operational 
efficiency and productivity.  

Figure 4. illustrates a distributed edge computing architecture featuring three edge devices, each integrated with sensors 
and a fine-tuned model, communicating bidirectionally with a cloud server that hosts a foundational model. This setup 
facilitates real-time data processing and synchronization, leveraging local computation at the edge for efficiency while 
centralizing model management for robustness in the manufacturing digital twins. 

 In the next section, we explore the critical role of uncertainty quantification within digital twins, a key component that 
enhances their predictive accuracy and reliability, particularly under complex and variable manufacturing conditions. 
Effective uncertainty management, incorporating both epistemic and aleatoric aspects, ensures that digital twins can operate 
not just reactively but proactively. By integrating advanced statistical methods to manage and quantify uncertainties, digital 
twins are equipped to offer more robust decision-making tools that enhance operational efficiency and minimize risks. This 
strategic approach to uncertainty management directly complements the real-time capabilities facilitated by edge computing, 
establishing a seamless operational workflow from data acquisition to decision implementation in the manufacturing process. 

 
iv. Uncertainty Quantification:  

  Uncertainty quantification in digital twins is a crucial aspect of enhancing their predictive accuracy and reliability, 
particularly in complex manufacturing environments where variability and unforeseen conditions can significantly impact 
production outcomes [24]. This process involves differentiating and quantifying the two main types of uncertainties: 
epistemic (model uncertainty) and aleatoric (inherent randomness). 
 

 
 

Epistemic Uncertainty arises from lack of knowledge or data about the system being modeled. It can be reduced 
as more information becomes available or as the model's fidelity improves [25] [26]. In the context of digital twins, epistemic 
uncertainty can be addressed through techniques such as Bayesian networks, which provide a framework for incorporating 
prior knowledge and evidence to update the probabilities of hypotheses as new data becomes available[27]. This method 
allows digital twins to continuously learn and adapt their models, thereby gradually reducing epistemic uncertainty. Another 
effective approach is the use of ensemble methods, where multiple models or simulations are run with slightly different 
initial conditions or parameters to explore a range of possible outcomes. This helps in understanding the sensitivity of the 
system to various inputs and refining the model based on collective insights from the ensemble. Additionally, incorporating 
quantile loss functions in these models can help in quantifying the uncertainty in predictive modeling by estimating the 
conditional quantiles of the outcome, which is particularly useful in risk management where extreme values (tail risks) are 
of interest. 

Aleatoric Uncertainty, on the other hand, refers to the variability that is naturally present in the system due to 
inherent stochastic processes or unpredictable external factors. This type of uncertainty cannot be reduced through additional 
data or improved modeling techniques but can be effectively quantified and managed. Monte Carlo simulations are 
particularly adept at handling aleatoric uncertainty. By running a large number of simulations with random inputs drawn 
from probability distributions representing the uncertainty in those inputs, digital twins can estimate the probability of 
different outcomes, providing a robust basis for risk assessment and decision-making. Techniques like probabilistic 
programming also allow for the explicit modeling of randomness and can integrate seamlessly with digital twins to simulate 
and predict under conditions of uncertainty. Additionally, applying quantile regression within this framework can further 

Research Question E. How can uncertainty in predictive modeling be quantified and managed within 
digital twin systems to ensure reliable manufacturing outcomes?  
Hypothesis. Utilizing a blend of Bayesian methods for epistemic uncertainty, Monte Carlo simulations 
for aleatoric uncertainty, and quantile loss functions to estimate conditional quantiles will enable more 
accurate quantification and management of predictive uncertainties in digital twin systems, thereby 
enhancing the reliability and decision-making efficacy in manufacturing processes. 
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enhance the handling of aleatoric uncertainty by focusing on the conditional quantiles of the distribution of outcomes, thus 
providing a comprehensive view of possible scenarios and their associated risks [28]. 

 

 
Figure 5. In this figure, we illustrate a comprehensive framework for managing uncertainties in manufacturing processes by integrating physical and digital 
systems, highlighting how variability and uncertainties are addressed through continuous monitoring, model updates, and simulations. 

Figure 5 illustrates a comprehensive framework for managing uncertainties in manufacturing processes through the 
integration of physical and digital systems. It shows how material and manufacturing variability, along with environmental 
and aleatoric uncertainties, impact the physical system which includes manufacturing processes and pre-processes. These 
physical aspects are continuously monitored and adjusted via a Model Predictive Control (MPC) system that utilizes updated 
surrogate model parameters influenced by sensor noise and model uncertainties. The digital system side depicts the 
utilization of high fidelity and surrogate models to handle numerical and prediction uncertainties, aiming to control the 
"unknowns of the unknowns" in the system through simulations and experiments. 

By leveraging these advanced statistical methods, including the integration of quantile loss functions, digital twins 
can provide more accurate risk assessments and robust forecasting models. They help manufacturers to effectively manage 
potential variability and complexities in production processes, ensuring better preparedness and response strategies. Digital 
twins equipped with capabilities to quantify both epistemic and aleatoric uncertainties can optimize operations not just under 
normal conditions but also under various scenarios of uncertainty, enhancing the resilience and efficiency of manufacturing 
systems. 

 
v. Adaptive Learning Mechanisms:  

  Adaptive learning mechanisms within digital twins represent a advancement in the way these systems interact with 
and respond to changing manufacturing environments. By integrating continuous learning capabilities, digital twins can 
dynamically update and adjust their models based on new data continuously collected from sensors and other data sources 
[29]. This process allows digital twins to not only react to changes but also predict future conditions and adjust operations 
proactively. The key to these capabilities lies in implementing advanced machine learning algorithms that can process and 
learn from data in real-time, such as online learning algorithms which update the model incrementally as new data arrives. 
This continuous adaptation helps maintain the relevance and accuracy of the digital twin's predictions, ensuring that the 
system stays aligned with the actual conditions of the manufacturing process and can effectively manage both expected 
and unexpected changes. 
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Figure 6. In this figure we show a hybrid control system that integrates offline model upda:ng and online real-:me uncertainty management with an op:mizer 
and model predic:ve control (MPC). 

Figure 6 illustrates a hybrid control system designed to integrate both offline and online updates for managing aleatory 
and epistemic uncertainties in predictive modeling. Offline, the system refines the predictive model through model updating 
and active learning methods. Online, it utilizes sensors and estimators to address real-time uncertainties. A hybrid controller 
featuring an optimizer and model predictive control (MPC) adjusts the system’s responses to enhance both accuracy and 
adaptability [30]. 

Moreover, adaptive learning mechanisms enhance the robustness of digital twins by allowing them to learn from 
anomalies and integrate those learnings into future operations. For example, if a digital twin detects an outlier in the 
production process that could indicate a potential fault or inefficiency, it can analyze and learn from this incident to improve 
its predictive algorithms, thus enhancing future performance. Techniques such as reinforcement learning, where the model 
learns optimal actions based on reward feedback from the environment, are particularly useful in such contexts. These 
models help digital twins to not only identify optimal operational strategies but also continuously refine these strategies 
based on ongoing performance feedback. This capability ensures that digital twins can keep evolving as intelligent systems, 
progressively improving their decision-making processes and operational strategies to optimize manufacturing outcomes 
continuously [31]. 
 

vi. Model Predictive Control  
Building on the foundation set by adaptive learning mechanisms, model predictive control (MPC) emerges as a powerful 

solution within the framework of digital twins, especially in the realm of manufacturing. MPC is a type of control algorithm 
that uses a model of the system to predict future states and make decisions to minimize a certain cost function over a set 
future period [13]. This approach is incredibly beneficial in manufacturing settings where it can be used to optimize 
production processes by predicting and adjusting to future conditions in real-time. The effectiveness of MPC hinges on its 
ability to integrate with digital twins, providing a detailed simulation environment where various control strategies can be 
tested and optimized before being implemented in the real system. This integration allows for meticulous planning and 
execution of operations, minimizing waste and enhancing efficiency by adjusting variables such as material inputs, speeds, 
and temperatures in response to forecasted changes in the production environment. 

Moreover, model predictive control within digital twins offers significant advantages when dealing with complex, 
multivariable systems typical in advanced manufacturing. By continuously receiving updated data from the digital twin, 
MPC can adjust its predictive models and control strategies dynamically, ensuring optimal performance despite fluctuating 
demands and operating conditions. This dynamic recalibration is crucial for maintaining high levels of production quality 
and operational efficiency. Additionally, the forward-looking nature of MPC helps in anticipating future system states, thus 
providing manufacturers with a strategic advantage in preemptively managing potential issues before they impact the 
production line. The synergy between MPC and digital twins not only enhances the real-time decision-making capabilities 
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but also bolsters the system’s overall resilience, making it adept at navigating the complexities and variabilities inherent in 
modern manufacturing processes [32].  

 
By implementing these strategies, manufacturing enterprises can maximize the potential of digital twins, making their 

operations more predictive, efficient, and adaptable. These enhancements are crucial for manufacturers aiming to lead in the 
high-tech, competitive landscape of 2040, ensuring that their processes are not only optimized for current technologies but 
also resilient and scalable for future advancements. Details of the roadmap of implementing these solutions are given in the 
Appendix.  
 

5. Conclusion 
As we move towards 2040, the integration of artificial intelligence (AI), machine learning (ML), and digital twin 

technologies is important to redefine the manufacturing landscape, driving a major transformation in how we design, 
produce, and manage the lifecycle of products. These technologies enhance operational efficiency through real-time 
monitoring and predictive maintenance, offering a significant competitive advantage. However, for these advancements to 
translate into real-world efficacy and leadership in the manufacturing sector, a strategic, methodical approach is necessary. 
By addressing the complex challenges of integrating these systems—including managing data streams, ensuring predictive 
accuracy, and maintaining robust system security—companies can harness the full potential of digital twins. This not only 
streamlines production but also fosters innovation, positioning businesses at the forefront of the industry. 

Furthermore, the successful implementation of these technologies requires a layered development and integration 
strategy, as outlined in our roadmap. From foundational development and strategic alliances to system integration and global 
rollout, each phase plays a crucial role in evolving these digital capabilities. Continuous improvement protocols and the 
adaptability of systems to handle predictive uncertainties are vital, ensuring that digital twins can operate under varying 
conditions and respond dynamically to manufacturing needs. These steps will ensure that digital twins not only mirror 
physical processes accurately but also contribute significantly to strategic decision-making and operational efficiency. 

In conclusion, the future of manufacturing hinges on the ability to effectively integrate and optimize AI, ML, and digital 
twin technologies within industry practices. By proactively addressing the outlined challenges and following a detailed 
implementation roadmap, manufacturers can achieve enhanced operational efficiencies, improved product quality, and good 
market responsiveness. The journey towards a technologically advanced manufacturing environment is complex but 
achievable with careful planning, robust technology integration, and continual adaptation to emerging trends and 
technologies. This strategic approach will enable industry leaders not only to survive but thrive in a rapidly evolving digital 
landscape, setting new standards for innovation and excellence in manufacturing. 
 

6. References: 
[1] Jiao, R., Commuri, S., Panchal, J., Milisavljevic-Syed, J., Allen, J. K., Mistree, F., and Schaefer, D., 2021, “Design 

Engineering in the Age of Industry 4.0,” J. Mech. Des., 143(070801). 
[2] Adhikari, S., 2021, “The Role of Surrogate Models in the Development of Digital Twins of Dynamic Systems,” 

Appl. Math. Model., 90, p. 662. 
[3] van Beek, A., Nevile Karkaria, V., and Chen, W., 2023, “Digital Twins for the Designs of Systems: A Perspective,” 

Struct. Multidiscip. Optim., 66(3), p. 49. 
[4] Kang, Z., Catal, C., and Tekinerdogan, B., 2020, “Machine Learning Applications in Production Lines: A Systematic 

Literature Review,” Comput. Ind. Eng., 149, p. 106773. 
[5] Alexopoulos, K., Nikolakis, N., and Chryssolouris, G., 2020, “Digital Twin-Driven Supervised Machine Learning for 

the Development of Artificial Intelligence Applications in Manufacturing,” Int. J. Comput. Integr. Manuf., 33(5), pp. 
429–439. 

[6] Huang, Z., Xi, T., Fey, M., and Brecher, C., 2022, “AI-Driven Digital Process Twin via Networked Digital Process 
Chain,” 2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence 

Research Question F. What are the ways of integrating real-time model predictive control with 
digital twins to optimize manufacturing performance and material properties? 
Hypothesis. Integrating real-time model predictive control with digital twins will optimize 
manufacturing performance and material properties by enabling precise adjustments based on 
continuous feedback from production data, significantly reducing operational inefficiencies and 
improving product quality. 



2024 NSF/ASME Student Design Essay Compe;;on 12 

and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress 
(DASC/PiCom/CBDCom/CyberSciTech), pp. 1–6. 

[7] Karkaria, V., Goeckner, A., Zha, R., Chen, J., Zhang, J., Zhu, Q., Cao, J., Gao, R. X., and Chen, W., 2024, “Towards 
a Digital Twin Framework in Additive Manufacturing: Machine Learning and Bayesian Optimization for Time Series 
Process Optimization,” J. Manuf. Syst. 

[8] Uhlemann, T. H.-J., Schock, C., Lehmann, C., Freiberger, S., and Steinhilper, R., 2017, “The Digital Twin: 
Demonstrating the Potential of Real Time Data Acquisition in Production Systems,” Procedia Manuf., 9, pp. 113–
120. 

[9] Leng, J., Zhang, H., Yan, D., Liu, Q., Chen, X., and Zhang, D., 2019, “Digital Twin-Driven Manufacturing Cyber-
Physical System for Parallel Controlling of Smart Workshop,” J. Ambient Intell. Humaniz. Comput., 10(3), pp. 
1155–1166. 

[10]Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosselut, A., 
Brunskill, E., Brynjolfsson, E., Buch, S., Card, D., Castellon, R., Chatterji, N., Chen, A., Creel, K., Davis, J. Q., 
Demszky, D., Donahue, C., Doumbouya, M., Durmus, E., Ermon, S., Etchemendy, J., Ethayarajh, K., Fei-Fei, L., 
Finn, C., Gale, T., Gillespie, L., Goel, K., Goodman, N., Grossman, S., Guha, N., Hashimoto, T., Henderson, P., 
Hewitt, J., Ho, D. E., Hong, J., Hsu, K., Huang, J., Icard, T., Jain, S., Jurafsky, D., Kalluri, P., Karamcheti, S., 
Keeling, G., Khani, F., Khattab, O., Koh, P. W., Krass, M., Krishna, R., Kuditipudi, R., Kumar, A., Ladhak, F., Lee, 
M., Lee, T., Leskovec, J., Levent, I., Li, X. L., Li, X., Ma, T., Malik, A., Manning, C. D., Mirchandani, S., Mitchell, 
E., Munyikwa, Z., Nair, S., Narayan, A., Narayanan, D., Newman, B., Nie, A., Niebles, J. C., Nilforoshan, H., 
Nyarko, J., Ogut, G., Orr, L., Papadimitriou, I., Park, J. S., Piech, C., Portelance, E., Potts, C., Raghunathan, A., 
Reich, R., Ren, H., Rong, F., Roohani, Y., Ruiz, C., Ryan, J., Ré, C., Sadigh, D., Sagawa, S., Santhanam, K., Shih, 
A., Srinivasan, K., Tamkin, A., Taori, R., Thomas, A. W., Tramèr, F., Wang, R. E., Wang, W., Wu, B., Wu, J., Wu, Y., 
Xie, S. M., Yasunaga, M., You, J., Zaharia, M., Zhang, M., Zhang, T., Zhang, X., Zhang, Y., Zheng, L., Zhou, K., and 
Liang, P., 2022, “On the Opportunities and Risks of Foundation Models.” 

[11]  Ramu, S. P., Boopalan, P., Pham, Q.-V., Maddikunta, P. K. R., Huynh-The, T., Alazab, M., Nguyen, T. T., and 
Gadekallu, T. R., 2022, “Federated Learning Enabled Digital Twins for Smart Cities: Concepts, Recent Advances, 
and Future Directions,” Sustain. Cities Soc., 79, p. 103663. 

[12] Thelen, A., Zhang, X., Fink, O., Lu, Y., Ghosh, S., Youn, B. D., Todd, M. D., Mahadevan, S., Hu, C., and Hu, Z., 
2023, “A Comprehensive Review of Digital Twin—Part 2: Roles of Uncertainty Quantification and Optimization, a 
Battery Digital Twin, and Perspectives,” Struct. Multidiscip. Optim., 66(1), p. 1. 

[13] McClellan, A., Lorenzetti, J., Pavone, M., and Farhat, C., 2022, “A Physics-Based Digital Twin for Model Predictive 
Control of Autonomous Unmanned Aerial Vehicle Landing,” Philos. Trans. R. Soc. Math. Phys. Eng. Sci., 
380(2229), p. 20210204. 

[14] Essien, A., and Giannetti, C., 2020, “A Deep Learning Model for Smart Manufacturing Using Convolutional LSTM 
Neural Network Autoencoders,” IEEE Trans. Ind. Inform., 16(9), pp. 6069–6078. 

[15] Reimer, J., Wang, Y., Laridi, S., Urdich, J., Wilmsmeier, S., and Palmer, G., 2022, “Identifying Cause-and-Effect 
Relationships of Manufacturing Errors Using Sequence-to-Sequence Learning,” Sci. Rep., 12(1), p. 22332. 

[16] Chakraborty, S., and Adhikari, S., 2021, “Machine Learning Based Digital Twin for Dynamical Systems with 
Multiple Time-Scales,” Comput. Struct., 243, p. 106410. 

[17] Zhang, H., Qi, Q., Ji, W., and Tao, F., 2023, “An Update Method for Digital Twin Multi-Dimension Models,” Robot. 
Comput.-Integr. Manuf., 80, p. 102481. 

[18] Bonaccorso, G., 2018, Machine Learning Algorithms: Popular Algorithms for Data Science and Machine Learning, 
2nd Edition, Packt Publishing Ltd. 

[19] Wang, J., Chen, D., Wu, Z., Luo, C., Zhou, L., Zhao, Y., Xie, Y., Liu, C., Jiang, Y.-G., and Yuan, L., 2022, 
“OmniVL: One Foundation Model for Image-Language and Video-Language Tasks,” Adv. Neural Inf. Process. Syst., 
35, pp. 5696–5710. 

[20] Wu, A., and Deng, C., 2023, “Discriminating Known From Unknown Objects via Structure-Enhanced Recurrent 
Variational AutoEncoder,” pp. 23956–23965. 

[21] Qi, Q., Zhao, D., Liao, T. W., and Tao, F., 2018, “Modeling of Cyber-Physical Systems and Digital Twin Based on 
Edge Computing, Fog Computing and Cloud Computing Towards Smart Manufacturing,” American Society of 
Mechanical Engineers Digital Collection. 



2024 NSF/ASME Student Design Essay Compe;;on 13 

[22] Sliwa, B., Piatkowski, N., and Wietfeld, C., 2020, “LIMITS: Lightweight Machine Learning for IoT Systems with 
Resource Limitations,” ICC 2020 - 2020 IEEE International Conference on Communications (ICC), pp. 1–7. 

[23] Raptis, T. P., and Passarella, A., 2023, “A Survey on Networked Data Streaming With Apache Kafka,” IEEE Access, 
11, pp. 85333–85350. 

[24] Lin, L., Bao, H., and Dinh, N., 2021, “Uncertainty Quantification and Software Risk Analysis for Digital Twins in 
the Nearly Autonomous Management and Control Systems: A Review,” Ann. Nucl. Energy, 160, p. 108362. 

[25] Abdoune, F., Rifi, L., Fontanili, F., and Cardin, O., 2023, “Handling Uncertainties with and Within Digital Twins,” 
Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future, T. Borangiu, D. 
Trentesaux, and P. Leitão, eds., Springer International Publishing, Cham, pp. 118–129. 

[26] Ríos, J., Staudter, G., Weber, M., Anderl, R., and Bernard, A., 2020, “Uncertainty of Data and the Digital Twin: A 
Review,” Int. J. Prod. Lifecycle Manag., 12(4), pp. 329–358. 

[27] Yu, J., Song, Y., Tang, D., and Dai, J., 2021, “A Digital Twin Approach Based on Nonparametric Bayesian Network 
for Complex System Health Monitoring,” J. Manuf. Syst., 58, pp. 293–304. 

[28] Karve, P. M., Guo, Y., Kapusuzoglu, B., Mahadevan, S., and Haile, M. A., 2020, “Digital Twin Approach for 
Damage-Tolerant Mission Planning under Uncertainty,” Eng. Fract. Mech., 225, p. 106766. 

[29] Sun, W., Lei, S., Wang, L., Liu, Z., and Zhang, Y., 2021, “Adaptive Federated Learning and Digital Twin for 
Industrial Internet of Things,” IEEE Trans. Ind. Inform., 17(8), pp. 5605–5614. 

[30] Besbes, O., Fonseca, Y., and Lobel, I., 2023, “Contextual Inverse Optimization: Offline and Online Learning,” Oper. 
Res. 

[31] Goodwin, T., Xu, J., Celik, N., and Chen, C.-H., 2022, “Real-Time Digital Twin-Based Optimization with Predictive 
Simulation Learning,” J. Simul., 0(0), pp. 1–18. 

[32] “Digital Twin-Based Subspace Model Predictive Control for Thermal Power Plant - Yanbo Zhao, Yuanli Cai, 
Haonan Jiang, 2023” [Online]. Available: 
https://journals.sagepub.com/doi/full/10.1177/09596518231154042?casa_token=jM7f69wguYkAAAAA%3ACmxiO
czZ3ni8IY4Xpfqn9A8xE8S4yr45YK0NX8cqOCsz0F5SCoHpZQJ9y3BtmdW7NBp6CqLQT6Ot. [Accessed: 14-
May-2024]. 

 
 
Appendix 
 
I. Details of the Research Questions:  
1.  How can AI models be developed to process and react to real-time data from various sources within 

digital twin frameworks? 
This question explores the development of AI systems capable of dynamically simulating and controlling 
manufacturing processes by integrating real-time data, and the technical challenges in ensuring these systems can 
swiftly interpret complex data streams to optimize production outcomes [8].  
 

2. How can advanced machine learning techniques be optimized within digital twins to enhance predictive 
accuracy and control manufacturing processes? 
This question seeks to explore the integration of sophisticated machine learning models that excel in processing 
complex, large-scale data from manufacturing environments. It focuses on how these models can be strategically 
implemented within digital twins to not only predict system failures but also to dynamically control and optimize 
manufacturing processes [9].  

3. How can foundational models be adapted and optimized within digital twin frameworks to enhance 
scalability and generalization across different manufacturing scenarios? 
This research question investigates the potential of leveraging large, pre-trained foundational models within 
digital twin systems. It explores the methods and techniques necessary to adapt these models to specific 
manufacturing contexts, focusing on their ability to scale effectively and generalize across diverse production 
environments. The question also considers the integration challenges and potential benefits of using foundational 
models to provide a base of learned knowledge that can be fine-tuned for particular tasks, thereby reducing the 
need for extensive data collection and model training from scratch in each new scenario [10]. 
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4. How can a networked system of digital twins be orchestrated to collaborate effectively, sharing insights 
and optimizing processes across multiple manufacturing sites? 
This question aims to explore the dynamics of interconnecting multiple digital twins to function as a cohesive 
system. It investigates the protocols, algorithms, and communication technologies needed to enable these digital 
twins to share data and insights seamlessly. The focus is on understanding how these connected digital twins can 
collectively enhance decision-making, optimize workflows, and improve overall manufacturing efficiency on a 
larger scale [11]. 

5. How can uncertainty in predictive modeling be quantified and managed within digital twin systems to 
ensure reliable manufacturing outcomes?  
This question focuses on identifying and developing methods to accurately measure and incorporate both 
epistemic and aleatoric uncertainties into the simulations and predictions made by digital twins. It also involves 
exploring how these methods can improve the robustness and trustworthiness of the insights provided by digital 
twins [12]. 

6. What are the ways of integrating real-time model predictive control with digital twins to optimize 
manufacturing performance and material properties? 
This research question delves into the specific impacts of applying real-time model predictive control within 
digital twins, looking at how this integration can optimize operational parameters and improve material 
properties in manufacturing, thereby reducing time to market and enhancing product quality [13]. 
 

II. Detailed Implementation Roadmap 
The successful integration of artificial intelligence (AI) with digital twin technology in manufacturing requires a 
structured and phased implementation roadmap. This roadmap ensures that development is systematic, allowing 
for iterative testing and refinement of technologies before full-scale deployment. Here’s an in-depth look at each 
phase, outlined with a focus on achieving operational excellence and innovation in the manufacturing sector. 

 
2020-2025: Foundational Development 
a. Research and Development of AI Algorithms 
• The initial phase focuses on the foundational development of AI algorithms specifically tailored to enhance 

digital twin technology. This includes conducting extensive research to deeply understand the unique demands 
and complexities of manufacturing processes that digital twins need to simulate and optimize. 

• Development of robust AI models capable of handling large-scale data analytics, predictive maintenance, and 
process optimization. These models are designed to be highly adaptable to the dynamic nature of manufacturing 
environments. 

b. Building Strategic Alliances 
• Forge partnerships with leading technology firms and academic institutions to tap into cutting-edge research and 

technological innovations. These alliances are crucial for staying abreast of the latest developments in AI and 
digital twin technologies. 

• Collaborate with universities and tech companies to conduct joint research projects and access advanced tools 
and platforms. These partnerships facilitate the exchange of ideas and enhance the technical expertise of the 
company's workforce. 
 
2025-2035: System Integration and Testing 

a. Integration of AI Technologies with Digital Twin Systems 
• Begin integration of the newly developed AI technologies with existing digital twin systems in controlled test 

environments to ensure seamless operation and the ability to accurately simulate and optimize manufacturing 
processes. 

• Utilize feedback from these tests to refine AI models, focusing on their accuracy and efficiency in processing 
real-time data and making predictive analyses. 

b. Scaling Up Pilot Projects 
• Implement pilot projects in select manufacturing settings to test the scalability and effectiveness of the 

integrated systems under real-world conditions. 
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• Use insights gained from these pilot projects to address practical challenges such as system compatibility, data 
integration issues, and real-time response capabilities. 

• Refine integration strategies based on the outcomes of these pilot tests, preparing the technology for wider 
deployment. 

 

 
Figure 7. Roadmap to integrate the digital twin framework for a manufacturing industry in 2040 
 
2035-2040: Global Implementation and Optimization 
a. Worldwide Rollout of Integrated Systems 
• Following successful pilot tests and refinements, initiate a global rollout of the integrated AI and digital twin 

systems across all manufacturing operations. This step involves standardizing the technology across different 
regions and training local teams to manage and maintain these systems. 

• Ensure that the rollout is compliant with international regulations and standards, adapting the systems to meet 
local requirements where necessary. 

b. Establishment of Continuous Improvement Protocols 
• Develop and implement continuous improvement protocols to regularly update and enhance the technological 

capabilities of the integrated systems. This includes setting up feedback mechanisms to gather operational data 
and insights from across global operations. 

• Use this data to continuously refine and optimize the AI models and digital twin configurations, ensuring they 
remain at the forefront of technological advancements. 

• Keep abreast of emerging trends and breakthroughs in AI and digital twin technology to further enhance system 
capabilities. 

• Establish a dedicated team focused on monitoring the performance of the integrated systems and initiating 
updates and improvements based on the latest technologies and operational feedback. 

c. Advancing Uncertainty Quantification 
• Integrate advanced methods for uncertainty quantification to improve the robustness and reliability of digital 

twin predictions. This research step involves developing and implementing probabilistic models and statistical 
methods that can effectively manage and interpret the uncertainties inherent in complex manufacturing 
processes. 

• Focus on enhancing the digital twins' ability to perform real-time predictive analysis and decision-making under 
uncertainty, crucial for adapting to the rapidly changing conditions in manufacturing environments. 

This roadmap outlines a comprehensive strategy for integrating AI with digital twin technologies in manufacturing, 
focusing on developing advanced capabilities, ensuring scalability, and maintaining robust security and accuracy in 
an increasingly complex and interconnected world. 
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