

**NSF/ASME Student Design Essay Competition 2023**

Boston, Massachusetts

Challenges in the Design of Complex Systems

**Innovating Futuristic Design and Manufacturing:  
a Thriving Company in 2040**

**Yucheng Li**

Advised by:

Andrew P. Murray, Ph.D.

David H. Myszka, Ph.D.

University of Dayton

# **Innovating Futuristic Design and Manufacturing: a Thriving Company in 2040**

## **Abstract**

This essay examines the journey of a design and manufacturing company striving to become a high-tech global enterprise by 2040. It explores the key elements necessary for success, including innovative research breakthroughs, a transformative mode of operation, and strategic partnerships. The essay discusses the research challenges faced by the company and outlines strategies to overcome them. It emphasizes the integration of advanced technologies, customer-centricity, agility, and sustainability in shaping the company's operations. By embracing these principles and forging collaborative relationships, the company aims to thrive in the ever-evolving landscape of high-tech design and manufacturing in 2040 and beyond.

## **1 Introduction**

Manufacturing is the systematic and organized process of utilizing physical, chemical, and mechanical techniques to transform raw materials into finished products on a large scale [1]. It involves the conversion of inputs into desired goods through various stages, including material sourcing, fabrication, assembly, quality control, and distribution. In an era of rapid technological advancements and global connectivity, the landscape of design and manufacturing is undergoing a profound transformation. As we look ahead to the year 2040, the aspirations of design and manufacturing companies extend beyond conventional boundaries, aiming to position themselves as high-tech global enterprises. These companies seek to leverage advanced technologies, innovative research breakthroughs, and strategic partnerships to drive their success both domestically and on the global stage. As consultants working closely with one such company, our objective is to chart a path that not only propels them toward their goals but also equips them with the necessary tools to navigate the challenges that lie ahead.

The journey toward becoming a high-tech global design and manufacturing enterprise in 2040 is replete with opportunities and complexities. Design and manufacturing companies must anticipate and adapt to emerging trends, embrace cutting-edge technologies, and adopt forward-thinking strategies. By doing so, they can unlock new levels of efficiency, agility, and customer-centricity while ensuring long-term sustainability and resilience.

One of the primary drivers of success for design and manufacturing companies in 2040 lies in their ability to push the boundaries of research and innovation. Breakthroughs in materials science, robotics, artificial intelligence, and other cutting-edge technologies will shape the landscape of manufacturing, offering unprecedented possibilities. The ability to anticipate and invest in these research areas will be a defining factor for companies seeking to gain a competitive edge and differentiate themselves from their counterparts.

However, along with the promise of breakthroughs comes a set of research challenges that must be addressed. The design and manufacturing company of 2040 will need to invest in robust research infrastructure, cultivate a culture of innovation, and attract top talent in specialized fields. The complex interplay between technology, market demands, and societal needs will necessitate a

multidisciplinary approach, where collaborations between academia, industry, and research institutions become critical to driving progress.

In addition to innovative research breakthroughs, the mode of operation of design and manufacturing companies in 2040 will undergo a paradigm shift. With the advent of technologies like the Internet of Things (IoT) [2], artificial intelligence (AI) [3], and cloud computing [4], traditional manufacturing processes will give way to fully digitized and integrated systems. This new mode of operation will enable seamless collaboration, real-time data analysis, and data-driven decision-making. The design and manufacturing company of 2040 must embrace agility, adaptability, and customer-centric design to respond rapidly to market demands and deliver personalized products and experiences.

Furthermore, strategic partnerships will play a vital role in shaping the destiny of design and manufacturing companies in 2040. Recognizing the importance of collaboration and knowledge-sharing, companies will actively seek out partnerships with technology providers, research institutions, supply chain partners, customers, government bodies, and sustainability initiatives. These partnerships will facilitate access to specialized expertise, cutting-edge technologies, and broader market reach, fostering a culture of collaboration and innovation.

In the following sections of this essay, we will delve into the research challenges that design and manufacturing companies will face in 2040, explore the mode of operation they must adopt, and examine the significance of strategic partnerships in driving their success. By analyzing these key aspects, we aim to provide a comprehensive roadmap that guides design and manufacturing companies towards their ambitious goals in the high-tech global landscape of 2040.

## 2 Characteristics of Successful Company in 2040

To envision the success of a company in 2040, it is essential to first outline the essential qualities that such a company should possess. This section provides a concise summary of the ten most important characteristics that a prosperous company should demonstrate in 2040, enabling it to thrive both domestically and globally. By defining these key attributes, organizations can lay the groundwork for strategic planning and focused initiatives that align with the evolving business landscape, positioning themselves for prominence in the year 2040.

**Technological Leadership:** At the forefront of technological advancements, the successful company in 2040 would maintain a relentless pursuit of innovation by consistently introducing groundbreaking solutions and pioneering products. By embracing emerging technologies such as artificial intelligence [5], machine learning [6], advanced robotics [7], 3D printing [8], nanotechnology [9], and quantum computing [10], the company would revolutionize various aspects of its operations. These transformative technologies would be leveraged to drive product design, enabling the creation of innovative and futuristic offerings that meet the evolving needs and desires of customers. In manufacturing processes, the company would harness automation and robotics to optimize efficiency, enhance precision, and reduce time-to-market. Furthermore, by adopting cutting-edge technologies, the company would streamline its operations, achieving higher levels of operational efficiency, scalability, and cost-effectiveness. Through its commitment to technological advancement, the company would establish itself as a trailblazer, pushing the boundaries of what is possible and shaping the landscape of industries in 2040.

**Agile and Adaptive:** To thrive in the dynamic business environment of 2040, the successful

company would exemplify a remarkable level of agility in its operations. It would continuously adapt to rapidly changing market dynamics, evolving customer demands, and emerging trends. A flexible organizational structure and streamlined processes would be the cornerstone of its operational framework, enabling quick decision-making and the efficient implementation of new ideas. The company's proactive approach to change would set it apart from its competitors, as it actively embraces and harnesses change as a competitive advantage. Rather than being resistant to change, the company would leverage it as an opportunity for growth and innovation. By staying agile and responsive, the company would remain ahead of the curve, readily adapting to new market realities and leveraging emerging trends to position itself as a leader in 2040.

**Global Presence and Reach:** The successful company in 2040 would boast a robust global presence, encompassing a widespread network of manufacturing facilities, research and development centers, and regional offices strategically positioned across key markets worldwide. By establishing an extensive footprint, this company would be able to leverage its physical presence to effectively serve customers in diverse regions. Recognizing the importance of local expertise, the company would forge strategic partnerships, joint ventures, and collaborations with indigenous companies, enabling it to tap into regional knowledge, cultural insights, and market nuances. Through these alliances, the company would gain a competitive advantage, adapt its products and services to local preferences, and establish strong relationships with customers on a global scale. With its expansive global reach, the successful company would be well-positioned to seize opportunities in various markets and solidify its position as a leader in 2040.

**Customer-Centric Approach:** Placing a high priority on customer-centricity, the successful company in 2040 would demonstrate a keen focus on understanding and meeting customer needs and preferences. The company would employ cutting-edge data analytics, machine learning, and customer insights to gain a deep understanding of its target audience, enabling it to drive product design, customization, and the creation of personalized experiences. By leveraging advanced technologies, such as augmented reality and virtual reality, the company would enhance customer interactions, offering immersive and engaging experiences that surpass traditional boundaries. The company would also prioritize the seamless integration of physical and digital touchpoints, providing an omnichannel experience that seamlessly blends the convenience of online platforms with the tactile and sensory elements of in-person interactions. By leveraging emerging technologies and staying attuned to evolving customer expectations, this company would forge strong connections with its customer base, fostering loyalty and satisfaction in 2040 and beyond.

**Sustainable and Responsible Practices:** Environmental sustainability and corporate social responsibility would be integral to the fabric of the company's operations in 2040. Through a commitment to energy efficiency, waste reduction, and carbon emission reduction throughout its entire value chain, the company would prioritize environmental stewardship. Embracing circular economy principles, it would adopt sustainable practices, including responsible sourcing and materials management, fostering a regenerative approach. Additionally, the company would actively support social causes, championing initiatives that promote inclusivity, equality, and community engagement. By embodying these values, the company would earn the trust and loyalty of environmentally conscious customers, solidifying its reputation as a responsible and ethical leader in 2040.

**Talent and Skills Development:** The successful company in 2040 would prioritize the cultivation of a culture of continuous learning, recognizing the importance of investing in talent development programs. By upskilling and reskilling its workforce, the company would empower its

employees to adapt to evolving technologies and market demands. This commitment to learning and growth would not only enhance the skills and capabilities of individuals but also contribute to the overall competitiveness and agility of the organization. To attract top talent, the company would create a supportive work environment that fosters collaboration, creativity, and professional fulfillment. It would offer competitive compensation packages and provide ample opportunities for personal and career advancement, ensuring that employees are motivated to contribute their best. Furthermore, the company would place a strong emphasis on diversity and inclusion, understanding that diverse perspectives lead to more innovative thinking and effective problem-solving. By embracing diversity, the company would tap into a wealth of different experiences, backgrounds, and ideas, enabling it to thrive in a dynamic and ever-changing business landscape.

**Data-Driven Decision Making:** The successful company in 2040 would fully harness the transformative power of data and analytics, leveraging it to drive informed decision-making at every level of the organization. By employing advanced data analytics techniques, machine learning algorithms, and predictive modeling, the company would unlock valuable insights to optimize various aspects of its operations. From production processes to supply chain management and product quality, data-driven approaches would be applied to enhance efficiency and effectiveness. Real-time monitoring capabilities would enable continuous tracking of key performance indicators, empowering proactive measures and timely interventions. Predictive maintenance strategies would be implemented, ensuring that potential issues are detected in advance and addressed promptly, minimizing downtime and maximizing operational efficiency. By embracing data-driven decision-making, the company would gain a competitive advantage, achieving higher productivity, cost savings, and overall operational excellence in 2040.

**Strong Intellectual Property Portfolio:** In 2040, the successful company would place a paramount emphasis on intellectual property protection, recognizing the value of safeguarding its proprietary technologies, designs, and manufacturing processes. Proactively, the company would prioritize the continuous development and refinement of its intellectual property, ensuring it remains at the forefront of innovation. Through diligent efforts, the company would actively seek patent registrations, taking necessary steps to secure legal protection for its unique creations. By building a robust and diverse intellectual property portfolio, the company would fortify its position in the market, enjoying a competitive advantage that deters potential infringement and imitations. The company's commitment to intellectual property protection would not only safeguard its innovations but also foster an environment conducive to sustained growth, investment, and long-term success.

**Collaborative Ecosystem:** In its pursuit of innovation and the advancement of breakthrough technologies, the successful company in 2040 would be highly proactive in fostering collaborations with a wide range of stakeholders. It would actively engage with academia, research institutions, startups, and industry partners to cultivate an ecosystem of shared knowledge and expertise. By participating in open innovation initiatives, the company would embrace the power of collaboration and co-creation, recognizing that collective efforts can yield exceptional results. Through these partnerships, the company would tap into external perspectives, leveraging the diverse insights and capabilities of its collaborators to push the boundaries of what is possible. This collaborative approach would enable the company to tackle complex challenges more effectively, accelerate research and development, and ultimately drive innovation that fuels its competitive edge in 2040 and beyond.

**Ethical and Transparent Governance:** In 2040, the successful company would exemplify a

steadfast commitment to upholding the highest ethical standards across its operations. Central to its corporate ethos would be a strong emphasis on transparency, integrity, and responsible corporate governance. The company would diligently adhere to all relevant regulations and industry standards, placing a premium on the protection of customer information through robust data privacy and cybersecurity measures. In alignment with its ethical values, the company would prioritize fair labor conditions, ensuring that employees are treated with dignity, and respect, and provided with safe working environments. Beyond its internal practices, the company would actively seek to make a positive social impact by engaging in philanthropic endeavors and initiatives that benefit the communities it serves. By consistently embodying ethical business practices, the company would foster trust among its stakeholders, strengthen its reputation, and contribute to a sustainable and responsible business landscape in 2040.

### 3 Research Challenges

In the pursuit of becoming a high-tech global design and manufacturing enterprise in 2040, the company will face a multitude of research challenges that are worth overcoming to maintain a competitive edge in a rapidly evolving landscape. These challenges will require significant research efforts to explore and develop cutting-edge technologies, processes, and strategies. From advancing materials science and manufacturing processes to addressing sustainability concerns and navigating the complexities of human-machine collaboration, the company must be prepared to tackle these challenges head-on. This section examines the key research challenges that the design and manufacturing company will encounter in 2040 and highlights the critical areas of focus needed to drive innovation, optimize operations, and ensure continued success both domestically and globally.

**Advanced Materials and Manufacturing Processes:** The continuous evolution of technology in the manufacturing industry will drive increasing demand for advanced materials that possess superior properties [11]. These materials will not only need to exhibit enhanced strength, flexibility, and conductivity but they must also be seamlessly integrated into the manufacturing process to unlock their full potential. Extensive research efforts will be required to explore and optimize emerging manufacturing processes like additive manufacturing (commonly known as 3D printing), nanotechnology, and advanced robotics. By harnessing the power of these cutting-edge technologies, manufacturers will be able to significantly enhance productivity levels, achieve unparalleled precision in production, and unlock new levels of customization capabilities. The integration of advanced materials and optimized manufacturing processes will open up new horizons for product development, enabling the creation of innovative, high-performance products that cater to the evolving needs of consumers and industries alike.

**Sustainable and Eco-friendly Solutions:** The escalating environmental concerns of the future will elevate the significance of sustainable manufacturing practices to unprecedented levels [12]. To meet this challenge, extensive research efforts will be indispensable in developing eco-friendly processes that prioritize the reduction of energy consumption and waste generation. Additionally, the exploration and integration of renewable energy sources will play a pivotal role in achieving sustainable design and manufacturing. This research will entail the investigation of novel materials that possess eco-friendly properties, as well as the adoption of circular economy principles to maximize resource efficiency and minimize waste. Implementing environmentally friendly practices

throughout the entire manufacturing life cycle, from raw material extraction to product disposal or recycling, will be crucial for ensuring a truly sustainable approach. By embracing sustainable manufacturing practices, companies can contribute to the preservation of the environment, mitigate the negative impact on natural resources, and pave the way for a greener and more responsible manufacturing industry in the years to come.

**Human-Machine Collaboration:** The continuous advancement of automation and artificial intelligence (AI) in the manufacturing industry presents a formidable challenge: the effective integration of humans and machines in the design and manufacturing process. To overcome this challenge, research efforts need to be directed toward the development of intuitive human-machine interfaces that facilitate seamless collaboration. Furthermore, the focus should be on creating collaborative robots that can work alongside humans, leveraging AI algorithms to enhance human productivity, decision-making, and creativity [13]. Striking the right balance between human skills and machine capabilities will be essential in achieving optimal outcomes. This delicate balance ensures that machines can handle repetitive and mundane tasks, while humans contribute their unique cognitive abilities, creativity, and problem-solving skills. Moreover, maintaining safety and efficiency throughout the human-machine collaboration process will be paramount, necessitating ongoing research to design robust safety protocols, algorithms, and training programs. By effectively integrating humans and machines, manufacturers can harness the complementary strengths of both to unlock new levels of productivity, efficiency, and innovation in the manufacturing landscape of the future.

**Data-Driven Design and Manufacturing:** In the future manufacturing landscape, data abundance offers great opportunities and challenges [14]. To seize these opportunities, research should focus on data analytics, machine learning, and AI to extract insights from vast manufacturing data. With advanced technologies, manufacturers gain valuable insights for data-driven decisions and innovation. Digital twin technology creates virtual replicas for prototyping, maintenance, and process optimization. Data security, privacy, and ethics are crucial. Robust measures protect sensitive information, strict protocols address privacy concerns, and ethics guide data collection, analysis, and use. Striking the right balance unlocks data's potential for transformative advancements in the industry.

**Global Collaboration and Supply Chain Resilience:** In the dynamic landscape of high-tech global design and manufacturing enterprises, establishing effective collaborations with partners, suppliers, and customers worldwide is of paramount importance [15]. Extensive research efforts should be dedicated to developing efficient communication platforms that enable seamless interaction and information exchange across geographical boundaries. Standardized interfaces that promote interoperability and compatibility between different systems and technologies will facilitate smooth collaboration and enhance productivity. Moreover, supply chain optimization algorithms can play a pivotal role in ensuring the resilience of global supply chains by optimizing inventory management, logistics, and distribution processes. However, global expansion also requires careful consideration of geopolitical factors, trade regulations, and cultural differences. Research endeavors should focus on understanding and navigating these complexities, including compliance with international trade regulations, addressing political and economic risks, and embracing cultural diversity in communication and business practices. By investing in research and innovation in these areas, manufacturing enterprises can successfully navigate the challenges of global collaboration, expand their reach, and foster strong, sustainable partnerships that drive growth and competitiveness in the global market.

**Regulatory Compliance and Intellectual Property Protection:** To stay ahead, manufacturing enterprises must address regulations, protect intellectual property (IP), and ensure product quality. This requires understanding evolving rules, complying with safety standards, and safeguarding IP rights. Effective strategies for patent filing, IP licensing, and technology transfer optimize innovation. Research should explore legal frameworks for emerging technologies like AI and blockchain. By investing in compliance and IP protection, enterprises can lead in innovation, secure assets, and drive sustainable growth.

In conclusion, the manufacturing industry in 2040 will face significant challenges that demand extensive research and innovation. Advancements in materials and manufacturing processes, sustainability, human-machine collaboration, data-driven design and manufacturing, global collaboration, and regulatory compliance will shape the future of manufacturing. By addressing these challenges through dedicated research efforts, manufacturers can drive transformative changes and thrive in the rapidly evolving industrial landscape.

## 4 Mode of Operation

In 2040, the design and manufacturing company will operate at the forefront of the high-tech global landscape, adopting a mode of operation that leverages advanced technologies and strategic approaches to drive innovation, agility, and customer-centricity. This section explores the company's mode of operation, outlining key strategies, processes, and technologies that will propel its success both domestically and globally.

At the core of the company's mode of operation is a fully digitized design and manufacturing approach. By 2040, the company has embraced the power of digital technologies, including the IoT, cloud computing, and AI. Through the use of digital twins, the company can simulate and optimize product design and manufacturing processes, facilitating virtual prototyping, rapid iteration, and cost-effective production.

The company also adopts an agile and collaborative development methodology, allowing it to respond rapidly to market demands and changing customer requirements. Cross-functional teams comprising designers, engineers, and manufacturing experts work closely together throughout the product development lifecycle. Agile project management tools and methodologies streamline communication and facilitate swift decision-making.

Customer-centricity is a key priority for the company, empowered by advancements in technology. By leveraging data analytics, AI, and machine learning, the company gains deep insights into customer preferences and behavior. Real-time feedback and analysis of customer data enable the company to tailor its products to individual needs, offering highly personalized experiences and unique solutions.

In terms of manufacturing and supply chain, the company embraces distributed manufacturing and a resilient approach. Global partnerships and networks enable production to be localized near end markets. Additive manufacturing (3D printing) and advanced robotics provide the flexibility to produce components or final products on demand, reducing lead times and optimizing logistics.

Sustainability and circular economy principles are ingrained in the company's operations, ensuring minimal environmental impact and long-term resilience. The company actively seeks ways to reduce waste, minimize resource consumption, and maximize product lifespan. Exploring innovative materials, recycling techniques, and renewable energy sources, it takes proactive steps

to minimize its ecological footprint. Collaborating with suppliers and customers, the company implements sustainable practices across the value chain.

Recognizing the importance of continuous learning and talent development, the company invests in upskilling and reskilling programs to equip its workforce with the necessary digital and technical skills. Embracing a culture of innovation, employees are encouraged to adopt new technologies, experiment with ideas, and contribute to the company's growth.

Data security and privacy are paramount in the company's mode of operation. With an increased reliance on digital technologies and data-driven operations, robust cybersecurity measures are in place to protect sensitive data and prevent unauthorized access. Compliance with data protection regulations and ethical handling of customer and employee data is fundamental to maintaining trust and credibility.

## 5 Partnerships

The success of the design and manufacturing company in its mission to become a high-tech global enterprise in 2040 will heavily rely on strategic partnerships [16]. Recognizing the immense value of collaboration and access to external expertise, the company is committed to actively pursuing partnerships with key stakeholders across various sectors. Through these alliances, a wealth of collective knowledge, cutting-edge technologies, expanded market reach, and fertile ground for fostering innovation will be accessible. This section delves into the pivotal role that partnerships will play in realizing the company's 2040 vision, highlighting the diverse range of entities it will collaborate with and emphasizing the reciprocal benefits and opportunities these partnerships will bring.

One essential aspect of these partnerships lies in engaging with Technology Providers. Collaborations with leading companies specializing in advanced materials, robotics, artificial intelligence, and other emerging technologies will ensure that the company remains at the forefront of technological advancements. By forming these partnerships, access to cutting-edge solutions will be facilitated, research and development efforts will be accelerated, and the company's technological capabilities will be enhanced.

Strong partnerships with Research Institutions and Academia will also be integral to driving innovation. By forging relationships with universities and research organizations, the company will tap into their expertise, leverage the latest research findings, gain access to state-of-the-art facilities, and engage with talented researchers and students. This collaboration will fuel advancements in design methodologies, manufacturing processes, and technology applications.

Establishing robust relationships with Supply Chain Partners is crucial for the company's success in 2040. Collaborative partnerships with suppliers, logistics providers, and distributors will enable streamlined supply chain management, just-in-time inventory practices, and optimization of distribution networks. These partnerships will ensure reliable access to quality components and materials, minimize lead times, and enhance cost efficiency.

Partnerships with Customers and End-users will be prioritized by the company. By engaging in co-creation activities, gathering feedback, and understanding evolving needs, the company will gain valuable insights to drive product innovation and deliver customized solutions. Collaborative partnerships with customers will foster long-term relationships, enhance customer satisfaction, and provide a competitive advantage in the market.

Active engagement with Government and Regulatory Bodies will be a critical aspect of the company's strategy [17]. Collaborative partnerships with government agencies and regulatory bodies will facilitate compliance with regulations, foster industry standards, and allow the company to contribute actively to policy development. These partnerships will ensure alignment with regulatory requirements while maintaining a competitive edge in both domestic and international markets.

Recognizing the importance of sustainability, partnerships with Non-Governmental Organizations (NGOs) and participation in sustainability initiatives will be a priority for the company. Collaborating with organizations focused on environmental conservation, social responsibility, and ethical business practices will reinforce the company's commitment to sustainable development. Through these partnerships, the company will engage in knowledge sharing, implement best practices, and work collectively towards building a more sustainable future.

In summary, strategic partnerships will be the bedrock of success for the design and manufacturing company's vision in 2040. By forging alliances with Technology Providers, Research Institutions and Academia, Supply Chain Partners, Customers and End-users, Government and Regulatory Bodies, as well as Non-Governmental Organizations and Sustainability Initiatives, the company will unlock opportunities, drive innovation, and position itself as a high-tech global enterprise.

## 6 Conclusion

In conclusion, as we look toward the design and manufacturing landscape of 2040, it is evident that innovative research breakthroughs, a new mode of operation, and strategic partnerships will be critical drivers of success. By embracing these key elements, companies can position themselves as high-tech global leaders, equipped to navigate the challenges and seize the opportunities of the future. The research challenges we have identified, including advanced materials, sustainability, human-machine collaboration, data-driven design, global collaboration, and regulatory compliance, will require substantial investment and concerted efforts. However, by dedicating resources to these areas, companies can unlock new avenues of growth, efficiency, and competitiveness.

Furthermore, the adoption of a new mode of operation, characterized by digitization, agility, customer-centricity, sustainability, and continuous learning, will be paramount for success in 2040. Companies must leverage advanced technologies such as IoT, AI, and cloud computing to optimize their design and manufacturing processes, collaborate seamlessly with cross-functional teams, and tailor products to individual customer needs. Establishing strategic partnerships with technology providers, research institutions, supply chain partners, customers, government bodies, and sustainability initiatives will fuel innovation, access specialized expertise, and enhance market reach. By embracing these partnerships, companies can leverage collective knowledge, stay at the forefront of technological advancements, and establish themselves as leaders in the industry.

In the coming years, the design and manufacturing landscape will undergo significant transformations, and those companies that proactively address the research challenges, adopt the new mode of operation and foster strategic partnerships will be well-positioned for success in 2040 and beyond. As the future unfolds, it will be fascinating to witness which companies rise to the occasion, embracing the opportunities presented by emerging technologies and global collaboration, and carving a path towards a prosperous future in the high-tech design and manufacturing industry.

## References

- [1] G. Chryssolouris, *Manufacturing systems: theory and practice*. Springer Science & Business Media, 2013.
- [2] S. Jeschke, C. Brecher, T. Meisen, D. Özdemir, and T. Eschert, *Industrial internet of things and cyber manufacturing systems*. Springer, 2017.
- [3] J. Lee, H. Davari, J. Singh, and V. Pandhare, “Industrial artificial intelligence for industry 4.0-based manufacturing systems,” *Manufacturing letters*, vol. 18, pp. 20–23, 2018.
- [4] K.-B. Ooi, V.-H. Lee, G. W.-H. Tan, T.-S. Hew, and J.-J. Hew, “Cloud computing in manufacturing: The next industrial revolution in malaysian?,” *Expert Systems with Applications*, vol. 93, pp. 376–394, 2018.
- [5] B.-h. Li, B.-c. Hou, W.-t. Yu, X.-b. Lu, and C.-w. Yang, “Applications of artificial intelligence in intelligent manufacturing: a review,” *Frontiers of Information Technology & Electronic Engineering*, vol. 18, pp. 86–96, 2017.
- [6] T. Wuest, D. Weimer, C. Irgens, and K.-D. Thoben, “Machine learning in manufacturing: advantages, challenges, and applications,” *Production & Manufacturing Research*, vol. 4, no. 1, pp. 23–45, 2016.
- [7] H. Parmar, T. Khan, F. Tucci, R. Umer, and P. Carbone, “Advanced robotics and additive manufacturing of composites: towards a new era in industry 4.0,” *Materials and manufacturing processes*, vol. 37, no. 5, pp. 483–517, 2022.
- [8] T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Nguyen, and D. Hui, “Additive manufacturing (3d printing): A review of materials, methods, applications and challenges,” *Composites Part B: Engineering*, vol. 143, pp. 172–196, 2018.
- [9] O. Ikumapayi, E. Akinlabi, A. Adeoye, and S. Fatoba, “Microfabrication and nanotechnology in manufacturing system—an overview,” *Materials Today: Proceedings*, vol. 44, pp. 1154–1162, 2021.
- [10] A. Kusiak, “Service manufacturing: Basic concepts and technologies,” *Journal of Manufacturing Systems*, vol. 52, pp. 198–204, 2019.
- [11] L. Koh, G. Orzes, and F. J. Jia, “The fourth industrial revolution (industry 4.0): technologies disruption on operations and supply chain management,” *International Journal of Operations & Production Management*, vol. 39, no. 6/7/8, pp. 817–828, 2019.
- [12] Z. Tang, W. Li, V. W. Tam, and C. Xue, “Advanced progress in recycling municipal and construction solid wastes for manufacturing sustainable construction materials,” *Resources, Conservation & Recycling: X*, vol. 6, p. 100036, 2020.
- [13] E. Matheson, R. Minto, E. G. Zampieri, M. Faccio, and G. Rosati, “Human–robot collaboration in manufacturing applications: A review,” *Robotics*, vol. 8, no. 4, p. 100, 2019.

- [14] J. Wang, C. Xu, J. Zhang, and R. Zhong, “Big data analytics for intelligent manufacturing systems: A review,” *Journal of Manufacturing Systems*, vol. 62, pp. 738–752, 2022.
- [15] D. Ivanov, A. Tsipoulanidis, J. Schönberger, *et al.*, *Global supply chain and operations management*. Springer, 2021.
- [16] O. F. Bustinza, E. Gomes, F. Vendrell-Herrero, and T. Baines, “Product–service innovation and performance: the role of collaborative partnerships and r&d intensity,” *R&d Management*, vol. 49, no. 1, pp. 33–45, 2019.
- [17] B. Wang, F. Tao, X. Fang, C. Liu, Y. Liu, and T. Freiheit, “Smart manufacturing and intelligent manufacturing: A comparative review,” *Engineering*, vol. 7, no. 6, pp. 738–757, 2021.